skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sandmæl, Thea N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Supercells in landfalling tropical cyclones (TCs) often produce tornadoes that can cause fatalities and extensive damage. In previous studies, many tornadoes have been shown to form <50 km from the coast, and their parent storms may also intensify as they cross the coastal boundary. This study uses WSR‐88D observations of TC tornadic mesocyclones from 2011 to 2018 to examine changes in their low‐level rotation upon moving onshore. We will show that radar‐derived azimuthal shear tends to increase in storms that cross the coastal boundary. Similar intensification trends are also found in radar‐derived (supercell) storm‐scale divergence, such that storm‐scale convergence increases as storms move onshore. It is likely changes in the near‐coast vertical wind shear and/or near‐shore convergence helps explain supercell intensification, which is important to consider particularly in operational settings. 
    more » « less
  2. Tropical cyclone (TC) tornadoes are often associated with lower‐skill forecasts compared to midlatitude supercellular tornadoes. Forecasts may be improved through a greater understanding of their lightning and radar signatures. This study investigates the lightning and radar characteristics of TC tornadic cells for comparison with TC non‐tornadic cells (i.e., strongly rotating cells without tornadoes) and non‐TC tornadic cells using three lightning networks and radar data. These results show that the majority of TC tornadic and non‐tornadic cells are not associated with lightning, although the former subset occurs with lightning more often. TC tornadic cases typically have lightning maximized to its northeast, whereas the non‐tornadic subset is associated with a lower density of flashes that are more symmetrically distributed. TC tornadic mesocyclones also show stronger low‐level rotation and convergence at the time of tornado occurrence compared to non‐tornadic cases. Hourly trends in rotation and convergence show stronger increases before tornado occurrence in both variables for TC tornadic mesocyclones, yielding small, nonsignificant differences with non‐TC tornadic mesocyclones during tornado occurrence. Finally, analysis of lightning throughout the TC shows that tornadic cells often occur on the downwind edge of a broad lightning maximum, whereas non‐tornadic cases occur in the middle of a weaker lightning maximum, with these maxima propagating away from the TC in both subsets. 
    more » « less
  3. Supercells in landfalling tropical cyclones (TCs) often produce tornadoes within 50 km of the coastline. The prevalence of TC tornadoes near the coast is not explained by the synoptic environments of the TC, suggesting a mesoscale influence is likely. Past case studies point to thermodynamic contrasts between ocean and land or convergence along the coast as a possible mechanism for enhancing supercell mesocyclones and storm intensity. This study augments past work by examining the changes in the hurricane boundary layer over land in the context of vertical wind shear. Using ground-based single- and dual-Doppler radar analyses, we show that the reduction in the boundary layer wind results in an increase in vertical wind shear/storm-relative helicity inland of the coast. We also show that convergence along the coast may be impactful to supercells as they cross the coastal boundary. Finally, we briefly document the changes in mesocyclone vertical vorticity to assess how the environmental changes may impact individual supercells. 
    more » « less